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A GENERALIZED BALLISTIC FORCE SYSTEM j

ABSTRACT

The dependence of the aerodynamic force and moment acting on a
missile in free flight on the past history of the missile's motion has
been omitted from the Ballistic Theory and only partly considered in
the Aerodynamic Theory. In this study the linear terms arising from
a consideration of the forces and moments due to acceleration effects
are added to the theory of motion. The resulting equations of motion
and their solutions yield a more physically complete system, useful to
both ballisticians and aerodynamicists in understanding the free flight
performance of symmetrical missiles. The expansion of the transverse
force and moment for a missile possessing a plane of mirror symmetry is
given in an appendix.

*Bureau of Ordnance, Department of the Navy.



INTRODUCTION

The aerodynamic force and moment which act on a missile in free
flight are assumed to depend on the attitude of the missile with respect
to its air velocity vector and on the motion of the missile. For this
reason the usual coordinate systems with axes numbered 1, 2, 3 are located

* on the missile so that their 1-axes coincide with the missile's axis of
rotational symmetry. If r (- , c2' t3) andhl- (OP'd12 ,fd 3).are the

angular velocities of the missile and of the coordinate system with
respect to an inertia system then w =d12 and w3 =X3° The coordinate

system can then be completely determined by the specification ofZ1¾
and an initial orientation of the 2-axiso There are at least three
different choices which are at present in use. They are.

1. Missile-fixed coordinates1 ( cl =l) which are used by

aerodynamicists for the specification of the force system and for studies
of the implications of symmetry on the aerodynamic force and moment;

2o Kelley-McShane or non-rolling coordinates 2 (n2 - 0 and 2 axis
initially orientated in the horizontal plane) which are used in their
theory of the yawing M0to of smetric miss- ls; and

3. Fixed-plane coordinates (2 axis initially in. the horizontal
plane andAi so selected that it stays there) which are convenient for
free flight spark. range work°*

It is usually assumed for small yaws that the aerodynamic force
and moment, which are functions of the linear velocity u - (u1_ u 2 , u3)

and the angular velocity o - (col, &2', w3) of the missile, are linear

functions of their cross components, u2, u3 , o2 and co3. Since the
ballistician mainly deals with missiles possessing rotational symmetry
this symmetry is exploited by the use of complex variables. The cross
velocity and cross angular velocity may(b er~t in nondimensional" 2 1u 0) F33j
farm as x 2 U and where d is the

ul u
missile's diameter, For missiles having mirror symnetr and trigonalN*
or greater rotational. gymmetry., the a rc nmic force, •, and moment, M,,

are given by the following equations

* X1 for these coordinates differs from zero by quantities containing
the square of the yaw and is zero for planar yawing motion. A
correction for spark range measurements is given in Ref. 3.

4* A missile possesses trigonal rotational symmetry if it possesses an
angle of rotational symmetry equal to 2w

- *.- - - - - -



F pd 2 2 (1pd u1 KDA

F2 + iF3 - pd u 1 KN + i v,) X + (vKXF .GiKs)hL (2)

M1 - - pd 3 4v KA (3)

M2 + iM 3 3 pd 3 d vKT-i ) T + (_ KH + iVKXT) (4)

where p is the air density

v .1. is dimensionless spin and the K's are ballistic
U1

cofCficients defined by tile above equations. Note that since Eqs. (2)
and (4) are relations between two-dimensional vectors the equations are
independent of the selection of -%. and thus are valid for the three coordi-

nate systems.

Although this ballistic force system has seemed perfectly satisfactory

to the ballistician, the aerodynamicist 5, 6 has worked for some time with
teris ianvol-ing the time derivative of k as well as ternis in X and
These additional derivative terms are measures of the past history of the
the missile's motion or lags in the flow development about the missile.
As we shall show, the inclusion of these new terms and the requirement of
consistent center of mass transformation require the introduction of ad-
ditional terms in the time derivative of o. These terms in the derivative
of t also appear quite naturally in Ref. 8 and 9 where slender body values
for all non--Magnus coefficients are calculated.

In this report we shall introduce two new variables which are related
to the cross acceleration and cross angular acceleration and investigate
their effect on the yawing motion, the swerving motion, and the center of
mass transformation. Since this generalized ballistic forbe system has a
one-to-one correspondence to the complete aerodynnimic System, the relations
between them as well as the slender body values for the nbn-Magnus coef-
ficients can and will be stated.

THE NEW VARIABLES

The linear acceleration vector, t, and angular acceleration vector,
can be expressed.ih.terma of the linear and angular velocity vectors by

the relations-

o oa ul U3 + ) U 0).Ul

6
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The dimensionless cross linear and cross angular acceleration vectors can
be written as

(a2 + ia 3 )d (u2 + iu 3 )d +Jd
= -iL+i --

2 U2  "I

Xf +• u'1 X i + id- X (7)U1  1

)2 0 2(a +--3 (o)2 + i3)d S1d
2  2 3 + I

ul Ul-

ivU i L ý (8)
Ul 1,

where primes indicate derivatives with respect to non-dimension0l arc length
t u11 ~p ".. dr.

Our first choice for the new variables would be the dimensionless
cross linear and cross angular accelerations. But an examination of Eqs.
(7 - 8) shows a basic handicap in this selection. If we did take these
to be our additional variables in the force and moment expansions,, o1r
first step in deriving the equations of motion would be to make use of
Eqs. (7 - 8) to obtain equations of motion in X, k, X', and 4'. But
then coefficients of X and [ would be unnecessarily complicated by
contributions from the coefficients of the new variables .

Since we would prefer to retain the convenient form of Eqs. (1 - 4),
an important feature of any selection for new variables should be that
they be two dimensional vectors. In order to insur-,e this property, a
closer examination of our idea of a vector is in order. By a vector we

mean a quantity for which certain operations are defined (multiplication
by scalar, addition and subtraction, vector and scalar products) and which
is represented in a coordinate system by a set of numbers which transform
in a prescribed manner under a coordinate system transformation. In

S7



particular., i :)and( 2 are two representations of the 'same two-dimensional,

vector in Cartesian coordinate systems which differ by a rotation through
the angle 0,

S cos0 -sine .x

3 (sin e cos / x

In our complex form this can be written as

ieiz ze~ (10)

where z = x + i and z = x2 + ix3 are different representations of the
2 .3 3

same vector quantity.

In Eqs. (7) and (8) we see that the quantities XI and ' :appear.
These quantities are complex numbers whose real and imaginary parts are
the derivatives of the components of two dimensional vectors. A natural
question to ask is whether these complex numbers also represent two
dimnsional co. we differentiate Eq. (10) and rey;mber that V
is not necessarily constant,

Z + ij6 z)ei(

Thus we see that X and 1 do not •in general represent vectors.

A possible objection to the above stateqpnt miqkt be based on the
observation that by means of Eqs. (7 - 8), X and lk can be written as

linear xombinations of vectors and, therefore, they must represent vectors
themselves. Now a linear combination of vectors is a summation of
vectors multiplied bl, scalars where scalars are quantities which are
represented in a co'ordinate system by a number which is invariant under
coordinate system cransformationso-L, which appears in Sqs. (7 - 8),
is defined to be the axial component Of the angu3ar velocity with
respect to an inertia system of the coordinate sy•tem in which these
equations are expressed, and, hence, can change under a coordinate
system transformation. (Note that the only coordinate transformations
which are allowed are given by Eq. (10). ) Thus we see that V' and J'
are not really equal to linear combinations of vectors.

If we rearrange Eqs. (7) and (8),ýild U(a 2' + ia 3)d u

)' . +M. il-l (12)
Iul Ul

S1 ld (a2 + i'3)d2

+i - -- 1 " 2 + (i, - -- ) ' )
U_ U, u.

1.



Here the quantities on the left sides of Eqs. (12 - 13) are vectors
because they are equal to linear ?ombinaVions of vectors. We also notice
that these quantities reduce to X and p respectively in non-rolling
6oordinates which are equivalent to the fixed-plane coordinates for smallyaw (JN 0). For this reason we will call them fixed-plane derivatives.

The aerodynamicist who usually deals with configurations without rotational
symmetry prefers to make use of the missile-fixed coordinates, and,
therefore, makes use of derivatives in those coordinates. If we subtract
ivr and ivlt from both sides of Eqs. (12) and (13) respectively we would
have these missile-fixed derivatives-.

I _ (a 2 + ia 3)d U11X+ i(- -V)X- 2 +• + iv)k (12)
Th u1

_V (a 2 + ia 3 ) d 2  'S+ i( -V)4 3c (13)

u1  U1

In the table we show how these two sets of variables, fixed-plane and
missile-fixed derivatives, appear in these two coordinate systems.

TABLET. I

Fixed-Plane Missile-Fixed
Coordinates Coordinates

X -- d- X X X + iVX fixed-plane

,f.Id ,derivatives

p. + i-p p . iv

X + Id k- V) X iV? X
"L1  missile-fixed

S, d Jd , , deriVatives

The first observation olte can make from this table is that for the
usual cases with which with aerodynamicist deals, namely where the spin
is small*(v<l), the differences between the two definitions are small
terms of second order and can be neglected. For rapid spin the case is
quite different. Since the treatment of rapidly §pinning models which
do not possess rotational symmetry is very difficult and as far. as the
authors know has not as yet been completely considered, we will restrict



ourselves to missiles possessing trigonal or greater symmretry. This is
the case in which the ballistician is most interested and for this case
the fixed-plane derivatives possess two advantages:

1. Almost all aerodynamic force and moment measurements made in
either wind tunnels or free flight ranges are essentiAlly made in fixed-
plane coordinates. As can be seen from the table if we made use of
missile-fixed derivatives, the non-derivative coefficients would be
modified and unnecessarily complicated by contributions from the coef-
ficients of these new terms. This objection is quite similar to the one
we raised against the use of the cross linear and cross angular acceler-
ations.

2. In a theoretical calculation of the aerodynamic coefficients
for a body of revolution the assurnptiop of no viscosity is usually made.
Since in this case the air has no way of knowin'g whether the missile is
spinning or not, the expansion of the force and moment in a coordinate
system which is not rotating with respect to the air (fixed-plane
coordinates) should not contain spin dependent terms. If we consider,
for example, the expansion in fixed-plane coordinates of the cross force
in terms of X and its missile-fixed derivative, then

F 2 + iF 3  l C1 X + C2(X,)**ilfixed (lh)

From Table I it follows that

F2 + i * - ivX) w(Cl - ivc 2 ) X + C~X, (lX)

where C1 and C2 are complex functions of the aerodynamic coefficients.

We know from the above considerations that (C1 - iVC and C can not be
functions~ ~~ ocsr n(C-iC 2) an 2 cnntb

functions of spin and, hence, C1 must vary linearly with spin. Similar

observations apply to the transverse components of the moment and to the
coefficients of 4 and its missile-fixed derivative. But this means that
a theoretical development for a body of revolution based on the assumption
of no viscosity will contain non-zero Magnus-like coefficientsi The
fixed-plane derivatives avoid this difficulty.

We, therefore, select k, + 1- X and d + i- a. to be our new vari-
U.1  U1

ables in the linear expansion of the aerodynamic force and moment. In
order to consider implications of symmetry, we have to express the force
and moment expansion in the missile-fixed coordinates**( 19
• In Refo 8 Sacks used missile-fixed coordinates in w4ich to calculate

slender body coefficients but specifically 4efines a as a fixed-plane
derivative. Strangely enough he does take q to be a missile-fixed
derivative and, therefore, obtains non-zero values of Cypq and Cnpq
for bodies of revolution.

• *Iii-the Appendix we develop the expansion of transverse force and moment
for a missile with a plane of mirror symmetry but no rotational symmetry.

10



In the missile-fixed coordinate system these variables become X1 + ivX
and ýt' + ivu. Now k' + ivX and ýi' + iv•t both transform under the
symmetry transformation exactly as k and t respectively and hence the
form of the dependence of the force and moment on the new variables should
bp the same as that of X and j. We need only write the generalized form
of Eqs. (2) and (4) and will use the subscript A for acceleration:

F 2 + iF 3 p 2  2 [( _F -F-pdu KN + ivKý,)X + (v•F÷iKs)ýt

Ad :d)_ d (15)
KjA + ivKFA) (X, +1-u X) + (vKXFx + 'KsA) + 1-

M2  im3 , pd 3 UI vKT iKM)X + (- KI + ivKxT)ý

(( Ad .jLd (16)

+ vKTA - iKMA) (X' + i--; X) + (-KHA + ivKxTA) (P, +i--

The dependence of the force and moment on a1 and a, is absorbed by the K's.

For the dynamic equations derived in this report we will work in the non-rolling coordinate system JLI O and E sti and (6N will beom less

complicated. As has been ruentioned before our ,,fixediplane derivatives"
are actually non-rolling derivatives and are only equal to fixed-plane
derivatives for small yawing motion. Eqso (J.7 - 20). of the next section*
are exactly true for any size of yaw when they are considered to be in the
non-rofling system. We make u'se of the *fixed-plane coordinates* in this
report mainly because they are easier to visualize.

EQUATIONS OF YAWING MOTION

For an arbitrary force system the equations of yawing motion for
fL- 0 may be written in the form 2, 10

.u FId

U + i +d2- g+ (17)
mu 1

-2 4L (F 2 + iF 3 )d+ u-X -• I +,j X+y (18)

mu 1
-u2

1 ' k 2 (M2 + i 3 )(
2 2 3

+ Ul 2 (20)
I muI

11



where m a mass

gld
Jg *-

Y (g2 + ig 3 )d JgX

.1

(gl' g2, g3 ) vector of acceleration due to gravity
kI3 axial radius of gyration in calibers

k2 transverse radius of gyration in calibersk2

_ Ic2

and T, 5 are complex conjugates of X and p.d3If we introduce the usual definition Ji Ki assume that K K

where KD is the trajectory drag coefficient, and neglect the second order

term (41 - -) in Eq. (17), Eqs. (17) and (19) can be written in the form
uI
u- JD + Jg (21)

V' -(D- J•) (22)

where D = JD- kl JA

Substituting Eqs. (15), (16), and (21) in Eqso (18) and (20), withJ- 0 and

defining KL KN - KD,

X' (1 + JNA - ivJFA) + A(JL - ivJF) + •'(vJXFA" iJsA)

(23)
+ vJX,- F + JS)] - Y ' 0 (3

M' k-2 (i + iA)+ Xk2vT+ iJf4) + A +k2
2 (vTA iJ) 2 VJ -1 2(-A vjT

+~ ~ (24~)

In order to eliminate ýt and 4', we now operate on Eq. (23) with
÷k•2~ ~ ~~~. -•-i "k2H JD + Jg" i•v(l ÷k2X

{ +.k;2 (JHA ivJXTAJ *+ k 2 JH Jfl+Jg

12



on Eq. (24) with L + ijSA1 d + + i(l + and add.

Assuming that derivatives of coeffieients can be neglect and using (18)

to eliminate vi. the result reduces to

-•(A - i•v X.) X +1"+J -17vX

I+ (- J;)z (25a)

'= (D - J ) (25b)
g

where the eight new symbols are defined in Table II.

The upper case letters with the exception of G and E are selected
in order to identify the moment coefficient which is the principal constit-
uent. The quite formidable expressions above may be simplified by certain
quite reasonable size assumptions. We assume that

IJF0•lO, Jil- 3 x 10-3 otherwise, B /IO2$ k12ZlO, k2 2 L2,
JFI /- 1 1d 3  1 1 5

Iv 1il, and X 1X4.2. Since Pd is usually about 5 x 10-5 this restricts

•L; magnitude of K_ to less than 2 and that of the other K.'s to less than

60. The requirement for the special case of Jg reduces to dl/2.,(l0'2 u)

where d is in feet and u is ft/sec. From Eq. (23), it can be seen that ýL
is comparable with - iX, p, with - iX' and hence the second term on the
right side of Eq. (25) can be neglected. HA and X reduce to unity and

similar approximations apply to the other terms*

. +. ,' ÷ (i + Jg - iO)X' + (- M - 7 T)X G (26)

he -2 (JMA +v2k2 JFA) JL JD÷k 2 (JH jM v2ki FASwhere H - 11-k22 D k JA

A 2(j +212 ,

A -2
T-T = T JL k, ' JT

G y - L(JD - k2  Ji " J g) + i7vj

and H, M, T, G are quantities defined in the yaw equation in Ref. 10 based
on the unmodified ballistic force system.

* If we multip y(25a) by (HA + irXA), we see that 7A can be neglected

where ever it appears. The solution of Eq. (26) can be easily stated
for the case of constant V and neglected gravity. It is a linear com-
bination of two complex exponentials with exponents

1/2 + ii_+ - v + + 2i1(2T -H p

13'
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/ J
If we neglect the small Magnus term in H, we see that .the only

effect of the generalized force system is-the addition of -k 2 J

to the real part of the coefficient of Vo., Since, in spark range work,
-2 -2k 2 JH is determined from this coefficient, we see that k 2 (JH - JMA)

is.,the quantity actually measured. JH appears by itself only in G
which gives risa to a very small component' of the yaw .of repose, and
for this reason no inconsistency has been noticed in spark range firings.

Two important cases where the above assumptions do not apply are
those of the airship and of the torpedo. In both of these cases

•d3 - is of order unity.* If. the effects of drag and gravity are neglected
m

and spin is taken to be zero, J JL andýEqs. (25) reduces to
A

HA k'' + H X' - M X 0 (27)

where H HA +k JN + k 2 A JHA JSA JMA

SJN +k 2 
2  H -JMA+ JNA JH JN JHA JSA JM JS JMA]

JK
A -k2

2 [J,( + j JH]
M =I T4 =s kJ ° ~

Since JH and J are positive-and J. is usually negative and less than
one, ** we see that M can be negative even when K is positive. For the

case when HA and H are positive we see that a statically unstable configu-

ration can be dynamically stable without spin. An explicit example of this
for the airship is given on pages 110 - 112 of Ref. 11.

THE SWERVING MOTION

By the swerving motion of a missile we will mean the displacement of
the center of mass due to the action of the aerodynamic-force normal to
the missile's axis. If we denote this non-dimensional complex

*
mf

Actually -j-, where mf is mass of displaced fluid, is of order unity.

93is approximately 1 where v is the volne in cubic calibers(usually

3 Z v z16)

SThese statements may be verified by cbnsidering the slender body values
of these coefficients given on page 26.

15



displacement by S

d t t

S-. JfO (F 2 + iF 3 )dt dt

0 0

p' p k - JN ivjF)?k + (v.,&+ iJ8 )4±+(

00 (28)

+ (vim + iJsd)x'] dpdp

Since the right side of Eq. (18) are essentially J terms and small, a
good approximation for p. is - iX'

.Os..J; ~J+ vJF)X +E[JS JM) +iti(-JX,+ JyA)] X1
00

(29)

+ (J ivJxFA)X'' dpdp

An examination of Eq. (26) shows that the 15 is aplroximately X u•ituipiied
by a J term and V' is at most X multiplied by a term. As.yet no good
measurement has been made of the coefficient of V and hence any deter-
mination of the coefficient of Xt is very unlikely. If the coefficient
of V ever is measured, it is important to note that it is (Js - J )

+ v (- JXF "+ JFA) and not JS - ivJXF as would be expected under
unmodified theory.

CENTER OF MASS TRANSFORMATIONS

An important aspect of the definitions of the aerodynamic force
and moment is the dependence of the coefficients on the location of the
center of mass. Although the aerodynamic force itself is independent
of the location of the center of mass, the yaw X which appears in its
definition is defined in terms of the velocity of the center of mass.
The dependence of the moment coefficients is more complex since they
relate to the aerodynamic moment about the center of mass and are
associated with X.o

We will first consider the effect on the unmodified force system
of moving the center of mass a distance of q calibers along the missile
axis. (Positive' q will denote a movement toward the nose of the missile).
All quantities relating to the missile with the new center of mass will
be marked by an asterisk.

16
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Now if corresponding points of two models of the same configuratio$n,
possess the same motion, the total aerodynamic force on each model is
the same and the total a erodynamic2momnthen computed about corresponding
geometric points will be the same .j, •J,, • For this motion the velocity
of the new c.m. with respect to the old is

U- ul Ed d,

"2  - U2  + x 0 -0u 2 +w 3  qd (30).

u3  U3  0 J u3 -o qd j

or uI - Ul, (31)

X* - X - iqp. (32)

Since the angular velocity vector and the total aerodynamic force are

independent of the location of the c.m.,

*= V (33)

F -* n F1  (35)

F2* + iF 3* -F 2 + iF 3  (36)

For the moment we have

M2 M2 - I X + F3 qd (37)
-3 3 L- I :F3J LM H 2 q dj114 3 o- + o d

or MI* = +J (3L3)

17



fnserting the force system definitions for the unmodified system
in Eqs. (35 - 39) and making use of Eqs. (31 - 34),

K. - KM K4* -K (40)

KN iK: (4-1.)

KF* KF (142)

KS* K KS - qKN (43)

Y-*" Iý - qlý (44)
:KM KM 45

- KM -

1*- IT - qK7  (46)

KH - KH - q(KS + KM) + q2KN (47)

KXT* - KXT - q(K.XF + KT) + q2 F (48)

If we' differentiate Eqs. (32) and (34), we can obtain the following
transformation relations for our new variables.

Ui J L 1 dE

'(49)

- J+i-U "I d + i" --l d (50)

Since Eqs. (491 and (50) are of the same form as Eqs. (32) and (34).,
we see that the transformation relations for the eight new ballistic
eoefficients should be formally the same as Eqs. (41 - 48).

18



S(52)

/ri jA
Kn- q (~S)

•- • M.A* " X A(54)

K- KMA* - KMA - q K111 (55)

K TA* = KT" - q 1 FA (56)

K A Ia U+ 1K q2KM (57)

KXTA- q 1ýý KT4 + q NM(58)

If the cross angular acceleration terms were neglected (KsA a KXFA M K A"

N KA N 0), then the cross linear acceleration terms would have.to be

identically zero in order to preserve the consistency of the ceniter of
mass transformatins, i.e,. Eqs., - 58). Thus we see the necessity

for these terms involving . + i u p.

Finally it should be recalled that-the only spark range technique
for obtaining Kq, which has been used, is based on the measurement of
"values of "KH" lor two c.m. positions from the yawing motion and the

use of Eq. (47). Since we now see that what is actually obtained from
the yawing motions is - K , we add Eqs. (47) and (55) in order
to find how this quanti% varles with C.m. location:

Hence that which is actually calculated by this spark range technique

is - K and not KS.

CORRE0SPONtNCE WITH AERODYNAMIC COEFFICIENTS

In this section we will define aerodynamic. coefficients in two
coordinate systems, the standard missile-fixed and the fixed-plane,
and deri'we the Telations between them and those of our generalized
ballistic coefficients.,* The missile-fixed coordinates 4,17 will nhave
force components (X, Y, Z) and moment components (L, M, N). irt the
fixed-plane coordinates we will designate tke force components as
(X, Y, Z) and the moment components as (L, M, N). The axial components
for both systems are the same and are defined as

-*-t should be emphasized that a simple linear expansion of force and moment
in the fixed-plane coordinates:is only possible for a symmetric missile.
This can be seen from an examination of Eqs. (A8-9) of the appendix.
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x - (1/2)pv2scx -- (.')pV2SCD (60)

L -(l/2)pV 2Sf(%ý)C( (61)
p

where V is the total velocity

S is a reference area

f is a reference length

p is axial component of angular velocity (.* p=col)

If we limit ourselves to small yaw where V A ul, we see from comparing
Eqs. (60 - 61) with Eqs. (1) and (3) that

S l-" 1/
K -1/2 S cX A 1D (62)

KA 14- l/T S (63)

For convenience in comparing the aerodynamic coefficients with the
ballistic, we will expand the transverse force and moment in complex form.
Since it can be shown that for a missile possessing trigonal or greater
xotational symmetry, pairs of aerodynamic coefficients are related, we will
exp1.icitly indicate such equivalent sets in this expansion by the symbols
/, -± Cz) and (Cm ± Cn) which stand for either one of the quantities in-N1 ,n z- , nh ybl •,Ca

side. Fur example, since and C p the symbols ( ,
paPM pp 4YP Z

and ) will be used to stand for either one of the two equivalent
Pa ( CP

quantities in the parentheses. With this in mind the transverse force and
noment* acting on a symmetric missile may be written ast

Y+ iZ - (.).pV 2 S o Cy ) - i(4)(Cp',-CZ)i• ( +ia)

"+ FW)(C , CZ )- r i(C - C T r(q 2+ ir) (

"Pq Pr r (q A

-~• P TJ P

* In Figure l'which is based on Figure 2 of Reference 17, the various
forces, moments, angles, and angular velocities are shown.

20



tj.0 to
W uJ

.U.>

U) Z
w -

w'O
0 z j

025

>?' c

> (1)- z (

3L LC U .,

> fi

21.



M+ iN S(Cr op, C )-i(Cm -aCn))] + ia)( §�7 1p' (q + ir

+ 'Cq "n r)C~ý P n pq] 7V_-

-EP+ f(Crn ,. Cnp• -(] (q( + i)(65)

'mý ÷ i( m', n 2V- -7
+ FCmi On)- i(1pr)(Cm.~ 4V~7 ~ 2 I

where a, - are angles of attack and sideslip in missile-fixed coordinates
q, r are transverse comoonents of angular velocity in the missile-fixed

coordinates.

In the fixed-plane coordinates the expansion of Y + iz and M + iýN would
be exactly that of Eqs. (64 - 65) with the tilde superscripts inserted.
If we set."1, co, in Eqs.. (15 - 16) and compare with Eqs. (64- 65)
and neglect the small uii, we obtain the following relations for the

missile fixed aerodynamic coefficients.
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4 )s 0y =~) 2~ 3 3 -V~

r 9 s cl. = 
K~) s v K~ VA)

- ~s cy.= SC .. ,,d

pp

~s C y ~s Cz K +K jd3
F pq

pa pp

- (66)XF- SA

()s Cm - s C =i ( K M 2q z

(~s cy . - (,ý)S ý K d
a p

C. c (.s cK 2K .d

qrlt H v

3 /3

Cm =(~)s C KT + KM&)
mpp np,

Pr pq
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0t

In order to connect our ballistic coefficients to the aerodynamic
coefficients in the fixed plane coordinates we need only equatea Ito zero in Eqs. (15 - 16), insert the tilde superscript in Eqs.
(64 - 65) and compare. Doing this and solving for the ballistic
coefficients,*

KM0 ( S1 KM M')(1KS 1)St,
1 Z -3) fd ( dC d a d "

K ~ ~~~ -C H--(t= -()(~4c~ - (4)(~C~

d) .q d r d

. (.)_f-C>.1 s
d q

II

the two different sets of aerodynamic coefficients,**

* The suggested aeroballistic CN'T of Ref: 15 and 16 are the same as

C•Is while the aeroballistic CM°'S are the same as C~mIs.

* * It is interesting to note that Ref. 15 makes the implicit assumption
that coefficients in missile-fixed and fixed-plane coordinates are
equal.. Since the aeroballistic CNS and Cin's of that report are
actually in the fixed-plane coordinates, its results are unaffected.
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C =o - *(i)+j -i #,2 C_

C ( C / 2 C~ Cm v +C2

t r I mq mq

m m

Cy G *Cy• C

r r q q

mC a (68)
Cy Ipa pMp p a

C,. uC' + C C mCsj -C,Y yp Y* III Mn m4
pq pq r pr Pr q

C * a"

pq pq

4 similar set of relations apply to the Z and N components. The only
difference is that those equations with pairs of coefficients on the
right side would have the sign between changed.

At this point we should indicate a third possible choice of coordinate
system for aerodynamic coefficients. This would be a missile-fixed
coordinate system where fixed-plane derivatives are used in the expansion.
The definitions fqr these coordinates could be obtained if ( d) were
replaced.by P * ia + ip(P 4ia) in Eqs. (64-65) and 4 + ir were replaced
by 4 + ir + ip(q + tr) in the same two equations. It can easily be shown
that the resulting coefficients are equal to the fixed-plane coefficients*
and hence, have a one-to-one correspondence with our generalized ballistic.

SUMENR BODY VAIJJES

In Ref. 8 values of all non-Pkgnus coefficients of slender bodies with
arbitrary cross-section are given and in Ref. 9 .the results for bodies of
revolution are derived by a simple technique. Since one of the valuable
features of our generalized ballistic system is its one-to-one correspondence
with the force system which arises from theoretical flow calculations, westate the results of Ref. 9 in terms of our generalized ballistic coefficients

*%Idhs is only true, however, for the small angles where the non-rolling coordLnatesý.
are the same as the fixed-plane coordinate. The above definitions actually
correspond to non-rolling derivatives and are exactly equivalent to our,
selection for new ballistic variables.

S .... ..o • .. .. . . . _,., • .. .. ,. ,•. . - , .. . . . . ,•, • • . .L .'• • • .25 '



KN= O KM = - s ÷ v

KS Sbx KH Sb C)Vi ^

K =v KX=-v( -X) (69)
=K m- o A 2 . g,, 2 )

v (x-xc) vI2v~x +,

where
sb is area of base in calibers squared

A
x is distance from base to com. in calibers

v is volume in calibers cubed
A
x is distance from base to centroid in calibers

Sis transverse radius of gyration of a homogeneous model about the
c.m. in calibers

is transverse radius of gyration of a homogeneous model about the
base in calibers

By use of Eqs. (69) we can estimate all of the coefficients which appear
in the equation ofo yawing motion for an airship (Eq. 27).

SUMARY

1. The Ballistic Theory of Motion has been extended to include all linear
terms arising from the linear and angular acceleration of the missile.

2. The Aerodynamic Theory of Motion has been extended and the original
71i inconsistencies have been corrected.

3. A unique correspondence between ballistic and aerodrnamic coefficients
has been made and the differences between force expansions for symmetric
missiles in missile-fixed and fixed-plane coordinates have been obtained.

4. Important results of this analysis are a better interpretation of free
flight measurements and an opportunity to compare theoretical computationS
of coefficients with free flight values.

JOHN 0
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APPENDIX A

Expansion of Transverse Force and Moment
For Missile With Only Mirror Symmetry

The usual linear force assumption for a missile with no specified symme-
try is the assumption that in missile-fixed coordinates the aerodynamic force
and moment are linear functions of

u U3 ' Cod co~d
2 3 2

These components are then replaced by combinations of X, X, ýi and p, and the
assumption of trigonal or greater rotational symmetry requires that the coef-
ficients of X and • vanish. This'plus mirror symmetry provides us with the
simple definitions given by Eqs. (1 - h). (See Refs. 1, 2, 4.)

In this appendix we will obtain the vector expansion of the generalized
transverse force and moment for a missile possessing only mirror symmetry.

A-_-d Lad
This means that we will have terms in 7, t, X, - i .- 1 and' - .

This necessity for stating our expansion with respect to the missile-fixed
coordinates, however,, does not conflict with our preference for taking deriva-
tives in the non-rolling system. We will consider in detail the yaw term in

the expansion of the transverse force and apple our results to the general
expansion of both force and moment.*

The contribution of the yaw to the dimensionless transverse force can be
written in the following form in missile-fixed coordinates:

f2m ' if3m - bo + b1 XM + b 2X (Al)

where bo, bl, b 2 are complex functions of Mach ndmber, axial spin, missile

shape and fluid properties.

In order to obtain the dependence of-these coefficients o:i spin, we con-

sider the implications of mirror symmetry. If we locate the 1-2 plane in
the plane of mirror symmetry, then a missile possessing mirror symmetry will
be invariant under a reversal of the 3 axis. Hence the functional dependence
of the force and moment on the dynamic variables measured in the new coordi-
nate system will be the same. Therefore f 2 * + if 3 * are measured in the
transformed coordinate system

f * + if *= bo (v*) + bl(v*) b2(*+ (A2)
2m 3m (v* b1(v*)X 2Vm

* The reasoning for the non-generalized force system is given in detail in

Ref. 4.
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But we know that

f*+ if*=f jf f +i (A3)
2m 3m ?2m 3m *m 3m

m m
V* _, V

. bo(- v) + bl(- v) Xm + b2 (- V))Xm
_... . _ _ _ (A4)

- bo(v) + bl(v)Xm * b 2 (v)X,

or

bo(v) b,(- v)

b,(v) bl(- v)

b2 (v) = b2 (- v)

Thus we see that the real parts of bo, bl, and b2 are even functions of

v and the imaginary parts are' odd functions of v. With-this in mind
we can make the following definition:

f2 if3 m (-KN + ivKF ) (-K + ivKF)- ÷ + (-K+N iv.KF)m X (A5)

where all the Ki's are even functions of v.

We now obtain the vector form of Eq. (A5). If e is the angle between
the 2-axis in the missile-fixed systemi and an arbitrary 2-axis,*

f 2 + if3 - (f2m + if3m) e (A6)

X- X e-e

""th f 2 + if3 =('KN + iVK )e + ('KN + ivKF).k

+(K ivN )ýe21e (T

* Since the missile-fixed 2 axis is in the plane-of mirror symmetry, e

is angle between this plane and the arbitrary ? axis.
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From this discussion we can make these observations:

(1) Since 1 and X transform similarly under reversal of the 3
axis, the coefficient of 1, which is the constant term, and the coef-
ficient of X have the same mirror symmetry properties.

(2) Since a variable and its conjugate transform alike under the
mirror transformation, their coefficients have the same properties.

(3) In the vector expansion of force or moment the coefficient of 1

should have an eiE factor and the coefficient of a conjugate variable

should have a e 2 ie factor.

With these points in mind we can now write the expansion of transverse
aerodynamic force and moment for a .missile possessing a plane of mirror
symmetry.* From an examination of Eqs. (15) and (16) it follows that:

F2 + iF3 2 (pd2 ( -KNo + ivKF )eio + -KN + iVKF)X

£.d
+ (vKx + iKs). + (- K A ÷ ivKFA)( +' "

U,

+ (vKxA + iKsA)(.' + l A)1
A A + ^ (A8)

+[(- KN + iVKF) + (vKXF + iKS)5

+ (-K NA-+- I1A) (T-'-ull) + (vKXFA+ iKS1) - -U e

M2 + iM3  od 3u, 2 •" VKT " iKo)e ÷ L(-vKT -iKM)) +(KH ivKXT)

S(- vKTA - iKMA)(Xt + i- ) + (-KHA + iVKxTA)(t' + ul

i+ r) A A i-.

ST- iKM)T + (-KH + ivKxT)ý + (- VKTA-i•A)(7 ' -ul

AL AXT i_=_d (A+ + iVK TA )(5 - 1 j e'i (A9) 1

where all K. s are even functions of v. Finally if we want to drop the

condition of mirror symmetry, we need only say that the non-Magnus coefficients
KN, KS, etc. and the products of Magnus coefficients by v, vKF, vKF, eto,

are arbitrary functions of spin.**

*In Ref. 15, all coefficients of conjugates and the Magnus term-KFO and KTO

are neglected and the resulting equations of motion are solved. In the
,Nsymbols of Refo 18, KNO- =KNXk and KMO w -KI?,where X is the asymmetry angle.

In Ref. 19, Hazeltine develops the dynamic theory for a missile with ro-
tational symmetry but lacking mirror symmetry.

29



REFERENCES

1. Maple, C. G., Synge, J. L., Aerodynamic Symmetry of Projectiles, 4.A.M.
Vol IV No. 3 (1946).

2. McShane, E. J., Kelley J. L., Reno, Fo V., Exterior Ballistics, University
of Denver Press, (1953).

3. Maynard, L. G., Galbraith, A. S., An Effect of the Choice of Axes in
the Kelley-McShane Theory .)f a Yawing Projectile BRLM 816, (1954)

4. Murphy, C. H., Effect of Symmetrýy on the Linearized Force system, BRLTN
743 (1952). -

5. Durand, W. F,, Aerodynamic Theory Vol V, Durand Reprinting Committee, (1943)...

6. Perkins, C. D., and lHge, Ro E., Airplane Performance, Stability and
Control, John Wiley and Sons (1949).

7. Kent, R. H., Notes on a Theory of Spinning Shell, BRL Report 898 (1954).

8. Sacks. Ao'H., Aerodynamic Forces, Moments, and Stability Derivatives
-for Siender Bodies of General Gros ection &NCA TN 32O 3.(1954).

9. Wood, R0 M., and Murphy, C. H., Aerodynamic Derivatives for Both Steady.
and Non-Steady Motion of Slender odies, BRLM 880 (1955).

10. Murphy, C. H., On the Stability Criteria of the Keiley-McInane
Linearized Theory of Yawing Motion. BEE Report 853 {1953).

I1. Durand, W. F., Aerodnamic Theory Vol VI, Durand Reprinting Committee,
(1943)'o

12. Neilsen, K. L., Synge, J. L., On the Motion of a Spinning Shell f4A.M.
Vol V-I, No 4, (1949).

13. Nicolaides, J. D., Variation of the Aerodynamic Force and Moment
Coefficients with Reference Position, BRL TN 746 (1952).

14. Hopgood. R. C., A Proposed Revision of tAmerican Standard Letter Symbols
for Aeronautical Icience s, Aero. Eng. Review, Jan 1953.

15. Nicolaides, J. P., On the Free Flight Motion of Missiles Having Slight
Configurational Assytries BRL Report 858, (1953)o

16. Nicolaides, J. Do., Correspondence Between the Aerodynamic and Ballistic
Nomenclatures, Bureau of Ordnance, Dept. of the Navy, Jan 1954o

17. American Standard Letter Symbols for, Aeronautical Sciences, ASA110.7-1954,
American soclety of Mechanical IxgInners, oct. •7-54.

30



18. Murphy, C. H., Data Reduction for the Free Flight Ranges, BRL
Report 900 (l9195 T. A..

19. Hazeltine, W. R., The. Motion of a Projectile with S=3.l Yaw. N.O.T.S.
Technical Memorandum RRB-33 (1949).

31



DISTRIBUTION LIST

No. of No. of
Copies Distribution Copics Distribution -

6 Chief of Ordnance 1 Commander
Department of the Army Naval Air Development Center

Washington 25, D. C. Johnsville, Pennsylvania
Attn: ORDTB - Bal Sec

ORDTU ( 1. cy) 3 Commander
ORDTA ( 1 cy) Naval Ordnance Test Station
ORDTX-AR(l r) China Lake, California
ORDTS (1 cy) Attn: Technical Library

Dr. Hazeltine
10 British Joint Services Mission

1800 K Street, N.W. 1 Commanding Officer and Director
Washington 6, D. C. David W. Taylor Model Basin
Attn: Miss &ary Scott Washington 7, D. C.

Tech Services Attn: Aerodynamics Lab

4 Canadian Army Staff 1 Chief of Staff
2450 Massachusetts Avenue U. S. Air Force
Washington 8, D. C. The Pentagon ' I

Washington 25, D. C.

4 Chief, Bureau of Ordnance Attn- DCS/D, AFDRD-AC-3
Department of the NavyWashington 25,, D. C. 1 Commander
Attn: Re3d Arnold Engineering Devel. Center

Tullahoma, Tennessee

2 Commander Attn. Deputy Chief of Staff
Naval Proving Ground R&D
Dahlgren, Virginia 4 Commnder

3 Commander Air Research and Devel. Command
Naval Ordnance Laboratory P. 0. Box 1395 -

White Oak Baltimore 3, Maryland
Silver Spring, Maryland Attn.- Deputy for Development
Attn: Mr. Nestingen

Dr. May Director

Dr. Kurzweg Armed Services Tech Inf Agency
Documents Service Center

1 Superintendent Knott Building
Naval Postgraduate School Dayton 2, Ohio
Monterey, California Attn" DSC - S&

2 Commander 4 ASTIA Reference Center
Naval Air Missile Test Center Technical Information Div
Point Mugu, California Library of.Congress

Washington 25, D,, C.

32



DISTRIBUTION LIST

No. of No. of
Copies Distribution Copies Distribution

1 Director 3 Commanding Officer
National Bureau of Standards PicatinnW Arsenal
Washington 25, D. C. Dover, New Jersey
kttn" Mr. Heald Attn: Samuel Feltman

Ammunition Labs
3 Director

National Advisory Committee 1 Commanding General

for Aer onauti cs Frankford Arsenal
1512 H Street, N. W. Philadelphia, PennsylvaniaWashington 25, DN C. Attn: Reports Group

Director 1 Commanding Officer

National Advisory Committee Camp Dietrick
for Aeronautics Frederick, Maryland

Ames Laboratorfd
Moffett laboratory 1 Professor of Ordnance
Attn: Dr. A. G. Charters U. S. Military Acadeny

Mr. H. J. Allen West Point, New York

Chief, Armed Forces Special 2 Director, JPL Ord Corps Install
Weapons Project Department of the Army

P. 0. Box 2610 4800 Oak Grove Drive
Washington 25, D. C. Pasadena, California

Attn: Irl E. Newlan
National Advisory Committee Reports Group

for Aeronautics
Langley Memorial Aeronautical1 Director, Operations Research

Laboratory . Office
SLangley Field.. Virginia 7100 Connecticut Avenue

e VChevy Chase, Maryland

National Advisory Committee Washington 15, D. C.
for Aeronautics

Lewis Flight Propulsion Lab *2 Armour Research Foundation
Cleveland Airport 35 W. 33rd Street
Cleveland, Ohio Chicago 16, Illinois
Attn: F. K. Moore Attn: Mr. W. Casier

Dr. A. Wundheile

Commanding Officer
Chemical Corps Chemical & 2 Applied Physics Lab
Radiological Lab. 8621 Georgia Avenue

Army Chemical Center, Maryland Silver Springs, Maryland
Attn: Mr. George L. Seielstad

Commanding General
Redstone Arsenal
Huntsville, Alabama
Attn.: Technical Library

33



S~I•

DISTRIBUTION LIST

No. of No. of
Copies Distribution Copies Distribution

1 Aerophysics Devel Corp. 1 University of Michigan
1P. 0. Box 657 Willow Run Research Center
Pacific Palisades, California' Willow Run Airport

Attnt Dr. William Bollay *psilanti., Michigan
Attn. NYr. J. E. Corey

1 Consolidated Vultee Aircraft
Corp. - 1 United Aircraft Corp.

Ordnance Aerophysics Lab. Research Department
Daingerfield, Texas East Hartford 8, Corm

Attn: Mr. J. E. Arnold Attnw Mr. C. H. King

1 Cornell Aeronautical Lab Inc.1 University of South California

4455 Genesee Street Engineering Center
Buffalo, New York Los Angeles 7, California
Attn- Miss Elma T. Evans Attn. Mr. H. R. Saffell

Librarian Director

1 California Institute of Tech 1 Wright Aeronautical Corp.
Pasadena, California Wood-Ridge, New Jersey
Attn• Library Attn' Sales Dept. (Government)

1 Firestone Tire and Rubber Co.l Professor F. W. Loomis
Defense Research Division Iead, Department of Physics
Akron, Ohio University of Illinois
Attn*. Dr. P. J. Gingo Urbana, Illinois

1 General Electric Co. 1 Prof. John von Neumann
Project HER=ES Institute for Advanced
Schenectady, New York . Stucr
Attn.- Mr. J. C. Hoffman Princeton, New Jersey

1 Northrop Aircraft, Inc. 1 Professor George F. Carrier

Hawthorne, California Division of Applied Science
1arvard University

2 North American Aviation, Inc. Cambridge 38, Massachusetts
12214 Lakewood Boulevard
Downey, California 1 Professor Francis H. ClAuser
Attn: Aerophysics Library Department.of Aeronautics

Johns Hopkins University
2 Sandia Corporation Baltimore 18, Maryland

Sandia Base
PF 0. Box 5800 1 Dr, Allen E. Puckett
Albuquerque, New Mexico Hughes Aircraft Conpany

Attn- Mr. Wynne K. Cox F1orence Avenue ;t Teal St.
Culver City, California

34i1



DISTRIBUTION LIST

No. of No. of

Copies Distribution Copi Distribution

Professor N. F. Ramsey Jr. 1 Dr. B. H. Sage
D oDepartment of ChemicalDepartment of PhysicsEnierg

o Harvard University Engineering
California Institute of

SCambridge 38, Massachusetts Technology
1 Dr. L° H. Thoms Pasadena, California

Watson Scientific CompUting 1 California Institute of
Laboratory Technology

612 West 116th Street Norman Bridge Laboratory
New York 27, New York of Physics

Pasadena, CaliforniaProfessor C. S. Draper Attn:.* Dr. Toaverett Davis

Department of Aeronautical
Engineering

Massachusetts Institute of
Technology

Cambridge 39, Massachusetts

Professor E. J. McShane
Department of Mathematics
University of Virginia
Charlottesville, Virginia

1 i Dr. R. E. Bolz
Case Institute of TechnolOgy
University Circle
Cleveland, Ohio

1 Professor J. W. Cell
North Carolina State College
Raleigh. North Carolina

Dr. J. L. Kelley

Department of Mathematics
University of California
Berkeley, California

Dr. Z. Kopal
Department of L]e ctrical Engineering
Massachusetts Ibstitute of Technology

Cambridge 39, Massachusetts

35i

II


